Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            At high concentration, long Watson/Crick (WC) double-helixed DNA forms columnar crystal or liquid crystal phases of linear, parallel duplex chains packed on periodic lattices. This can also be a structural motif of short NA oligomers such as the 5’-GTAC-3’ studied here, which makes four-base WC duplexes having hydrophobic blunt ends. End-to-end aggregation then assembles these duplexes into columns and columnar phases are stabilized, in spite of breaks in the double helix every four bases. But the new degrees of freedom introduced by such breaks also enable opportunities for a more diverse palette of self-assembly modes, producing striking self-assemblies of DNA that would not be achievable with contiguous polymers. These include recently reported three-dimensional (3D) periodic low-density nanoscale networks of GCCG, and the twist grain boundary (TGB) phase presented here. In the TGB, columns of GTAC pairs assemble into monolayer sheets in which the duplex columns are mutually parallel. However, unlike in the columnar crystals, these sheets stack in helical fashion into lamellar arrays in which the column axis of each layer is rotated through a 60° angle with respect to the columns in neighboring layers. This assembly of DNA is unique in that it the fills a 3D volume wherein the major grooves of columns in each layer mutually enter and interlock with the major grooves of columns in neighboring layers. This locking is optimized by small adjustments in structure enabled by the breaks in the duplex backbones.more » « less
- 
            Free, publicly-accessible full text available December 17, 2025
- 
            Hydrogels, known for their mechanical and chemical similarity to biological tissues, are widely used in biotechnologies, whereas semiconductors provide advanced electronic and optoelectronic functionalities such as signal amplification, sensing, and photomodulation. Combining semiconducting properties with hydrogel designs can enhance biointeractive functions and intimacy at biointerfaces, but this is challenging owing to the low hydrophilicity of polymer semiconductors. We developed a solvent affinity–induced assembly method that incorporates water-insoluble polymer semiconductors into double-network hydrogels. These semiconductors exhibited tissue-level moduli as soft as 81 kilopascals, stretchability of 150% strain, and charge-carrier mobility up to 1.4 square centimeters per volt per second. When they are interfaced with biological tissues, their tissue-level modulus enables alleviated immune reactions. The hydrogel’s high porosity enhances molecular interactions at semiconductor-biofluid interfaces, resulting in photomodulation with higher response and volumetric biosensing with higher sensitivity.more » « less
- 
            Abstract Metal halide perovskites show promise for next-generation light-emitting diodes, particularly in the near-infrared range, where they outperform organic and quantum-dot counterparts. However, they still fall short of costly III-V semiconductor devices, which achieve external quantum efficiencies above 30% with high brightness. Among several factors, controlling grain growth and nanoscale morphology is crucial for further enhancing device performance. This study presents a grain engineering methodology that combines solvent engineering and heterostructure construction to improve light outcoupling efficiency and defect passivation. Solvent engineering enables precise control over grain size and distribution, increasing light outcoupling to ~40%. Constructing 2D/3D heterostructures with a conjugated cation reduces defect densities and accelerates radiative recombination. The resulting near-infrared perovskite light-emitting diodes achieve a peak external quantum efficiency of 31.4% and demonstrate a maximum brightness of 929 W sr−1m−2. These findings indicate that perovskite light-emitting diodes have potential as cost-effective, high-performance near-infrared light sources for practical applications.more » « lessFree, publicly-accessible full text available December 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
